1,212 research outputs found

    Physico-chemical variables determining the invasion risk of freshwater habitats by alien mollusks and crustaceans

    Get PDF
    The aim of this study was to assess the invasion risk of freshwater habitats and determine the environmental variables that are most favorable for the establishment of alien amphipods, isopods, gastropods, and bivalves. A total of 981 sites located in streams and rivers in Germany. Therefore we analyzed presence-absence data of alien and indigenous amphipods, isopods, gastropods, and bivalves from 981 sites located in small to large rivers in Germany with regard to eight environmental variables: chloride, ammonium, nitrate, oxygen, orthophosphate, distance to the next navigable waterway, and maximum and minimum temperature. Degraded sites close to navigable waters were exposed to an increased invasion risk by all major groups of alien species. Moreover, invaded sites by all four groups of alien species were similar, whereas the sites where indigenous members of the four groups occurred were more variable. Increased temperature and chloride concentration as well as decreased oxygen concentration were identified as major factors for the invasibility of a site. Species-specific analyses showed that chloride was among the three most predictive environmental variables determining species assemblage in all four taxonomic groups. Also distance to the next navigable waterways was similarly important. Additionally, the minimum temperature was among the most important variables for amphipods, isopods, and bivalves. The bias in the occurrence patterns of alien species toward similarly degraded habitats suggests that the members of all four major groups of freshwater alien species are a non-random, more tolerant set of species. Their common tolerance to salinity, high temperature, and oxygen depletion may reflect that most alien species were spread in ballast water tanks, where strong selective pressures, particularly temperature fluctuations, oxygen depletion, and increased salinity may create a bottleneck for successful invasion. Knowledge on the major factors that influence the invasion risk of a habitat is needed to develop strategies to limit the spread of invasive species

    Oyster – Sharing and Re-using Ontologies in a Peer-to-Peer Community

    Get PDF
    In this paper, we present Oyster, a Peer-to-Peer system for exchanging ontology metadata among communities in the Semantic Web. Oyster exploits semantic web techniques in data representation, query formulation and query result presentation to provide an online solution for sharing ontologies, thus assisting researchers in re-using existing ontologies

    An Editorial Workflow Approach For Collaborative Ontology Development

    Get PDF
    The widespread use of ontologies in the last years has raised new challenges for their development and maintenance. Ontology development has transformed from a process normally performed by one ontology engineer into a process performed collaboratively by a team of ontology engineers, who may be geographically distributed and play different roles. For example, editors may propose changes, while authoritative users approve or reject them following a well defined process. This process, however, has only been partially addressed by existing ontology development methods, methodologies, and tool support. Furthermore, in a distributed environment where ontology editors may be working on local copies of the same ontology, strategies should be in place to ensure that changes in one copy are reflected in all of them. In this paper, we propose a workflow-based model for the collaborative development of ontologies in distributed environments and describe the components required to support them. We illustrate our model with a test case in the fishery domain from the United Nations Food and Agriculture Organisation (FAO)

    Situationsgesteuerter mobiler Zugriff auf Digitale Bibliotheken

    Get PDF
    Using state of the art mobile computing technology it is today possible to access any information at almost any place and any time. But considering the rapidly growing amounts of digital content, the following question gains importance: How do I find the right information at the right place and the right time. Specifically in mobile environments it is useful to exploit context information, i.e. information about the situation of the user and its surroundings, to enrich human computer interaction by proactively providing situation relevant information. In the scope of this master's thesis, a system architecture for situation aware mobile access to Digital Libraries has been developed and prototypically implemented. For demonstration, the domain of conferences and exhibitions has been chosen

    A holistic approach to collaborative ontology development based on change management

    Get PDF
    This paper describes our methodological and technological approach for collaborative ontology development in inter-organizational settings. It is based on the formalization of the collaborative ontology development process by means of an explicit editorial workflow, which coordinates proposals for changes among ontology editors in a flexible manner. This approach is supported by new models, methods and strategies for ontology change management in distributed environments: we propose a new form of ontology change representation, organized in layers so as to provide as much independence as possible from the underlying ontology languages, together with methods and strategies for their manipulation, version management, capture, storage and maintenance, some of which are based on existing proposals in the state of the art. Moreover, we propose a set of change propagation strategies that allow keeping distributed copies of the same ontology synchronized. Finally, we illustrate and evaluate our approach with a test case in the fishery domain from the United Nations Food and Agriculture Organisation (FAO). The preliminary results obtained from our evaluation suggest positive indication on the practical value and usability of the work here presented

    From the Western Alps across Central Europe: Postglacial recolonisation of the tufa stream specialist Rhyacophila pubescens (Insecta, Trichoptera)

    Get PDF
    Background: Dispersal rates, i.e. the effective number of dispersing individuals per unit time, are the product of dispersal capacity, i.e. a species physiological potential for dispersal, dispersal behaviour, i.e. the decision to leave a habitat patch in favour of another, and connectivity of occupied habitat. Dispersal of species that are highly specialised to a certain habitat is thus strongly limited by habitat availability. Additionally, species inhabiting very stable environments may adopt a sedentary life-style. Both factors should lead to strong genetic differentiation in highly specialised species inhabiting stable environments. These two factors apply to our model species Rhyacophila pubescens a highly specialised freshwater insect that occurs in tufa springs, a very stable habitat. Results: We examined the genetic population structure and phylogeography using range-wide mtCOI sequence and AFLP data from 333 individuals of R. pubescens. We inferred the location of Pleistocene refugia and postglacial colonisation routes of R. pubescens, and examined ongoing local differentiation. Our results indicate intraregional differentiation with a high number of locally endemic haplotypes, that we attributed to habitat specificity and low dispersal rates of R. pubescens. We observed high levels of genetic diversity south of the Alps and genetic impoverishment north of the Alps. Estimates of migrants placed the refugium and the source of the colonisation in the Dauphine Alps (SW Alps). Conclusions: This is the first example of an aquatic insect with a colonisation route along the western margin of the Alps to the Central European highlands. The study also shows that specialisation to a stable environment may have promoted a behavioural shift to decreased dispersal rates, leading to stronger local population differentiation than in less specialised aquatic insects. Alternatively, the occurrence of highly specialised tufa spring habitats may have been more widespread in the past, leading to range regression and fragmentation among present day R. pubescens populations
    corecore